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Boundary layers adjacent to continuous surfaces moving with constant velocity from a 
stationary source represent a class of boundary layer phenomena often encountered in 
practice, for example, processes involving the t'olling and extrusion of materials, and 
atomization processes where liquid initially in the form of cylindrical jets or sheets are 
ejected from a nozzle. Generally, in the latter case, the coherent liquid stream persists only 
for a brief time, typically less than a few milliseconds, but during this period, the nature of 
the boundary layer may play a significant role in establishing the mechanism by which the 
stream breaks down into drops. In particular, it has been shown (Crapper et al. 1973) to 
influence the growth of aerodynamic waves on rapidly moving liquid sheets, and to affect 
the onset of electrohydrodynamic wave motion (Clark & Dombrowski 1974) by controlling 
the diffusion of charged species from a hot ionized gaseous environment. 

The first account of work on this subject appears to be that due to Howarth (1959) who 
examined the general case of laminar boundary layer flow adjacent to a solid of revolution. 
Subsequently, Sakiadis (1961a, b) published a similar, but more detailed study of the 
boundary layer flow adjacent to a plane surface. He approached the problem in two ways ; 
the first of these involved the numerical solution of the boundary layer equations, whilst 
the second was concerned with obtaining an analytical solution by the Polhausen integral 
method. The results showed that although the latter could describe the surface drag with 
reasonable accuracy, the velocity profile, and the parameters relating to entrainment and 
boundary layer thickness, were subject to more significant errors. In this note, we present 
an alternative solution which more accurately approaches the numerical one over the 
entire flow field. 

It is easily demonstrated (Meksyn 1961) that the equations describing boundary flow 
adjacent to a solid of revolution reduce to a form similar to that for two-dimensional flow, 
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and thus, following H o w a r t h  we may, wi thout  loss of generality, seek a solution of the 
Blasius equat ion,  

,! .... + Z4 " = 0  I l l  

which satisfies the bounda ry  condi t ions  imposed by a moving  cont inuous  surface, namely,  

j ' =  1, . / = 0  at r/ = 0 ,  and . [ " - ~ 0  as y - ~  z .  

For  the solut ion scheme presented here we take as the start ing point  the integral equation,  

j "  = 1 + a exp ( -F l r / ) )  dr/ [2] 

where F(r/) = So' . /dr/  and a is a constant  of integrat ion (i.e. a = f"(0)). The  integrand of 
equat ion [2] can be seen to be a rapidly decreasing function with a s ta t ionary  point at 

r / =  0, and we may  therefore obtain  a solut ion by the me thod  of steepest descent (Meksyn 

1961). 
Let 

f =  r/+ r_ L 
6/.nY/n 

_ !tl 

where f satisfies the bounda ry  condi t ions  at r / =  0. Subst i tut ing the expression into [1] 
we obta in  the coefficients a,  in te rms  of a 2 = a (see equat ion  [2]). 

a 2 a 4 a2 5 3a 0 l la2 7 
f =  r/ + TSr/ - .~r/ - .~5r/ + .~r/ + =.T7-r/ " "  [33 

The  u n k n o w n  parameter ,  a, is found f rom [2] and the b o u n d a r y  condi t ion at infinity, viz. 

1 + a exp ( - F(r/)) dr/ = 0 [4] 

and is evaluated by means  of the following subst i tut ions 

11 = ~ (A,, , /(m + i))r ira+iv2 [5] 
0 

and 

F(r/) = r/2 ~ C.r/" = r [67 
o 

where by compar i son  with [3], 

Co - I ,  C l  = a / !3 ,  C 2 -~- O, C! 3 = - - ( . 1 / ! 5  

Ca, = - - a 2 / ! 6 ,  C 5 = 3a/!7, C~ = 1 1 a 2 / ! 8  . . . . .  

C o m b i n i n g  [4], [5] and [6], 

a e ~ ~ ~" l~..2dr = - 1  [7] 
0 0 [2 
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which on integration in gamma-functions gives (m+,)) l + ~  A,.F--2--- =0. [8] 

In order to evaluate the coefficients A,, we differentiate [5] to give 

~ A  d~l = ~'-r"z('-l)/2 d'r 
o 2 

whence it follows that, 

fo+ d"drl + 1~/2 - A " f  °+°+2  d~=~ 2irmA,. [9] 

where 0 + denotes a circuit in a positive direction around the zero point, and the single 
circuit around q = 0 corresponds to a double circuit round z = 0 in the plane. This inte- 
gration path is necessary to dispose of the fractional powers of T. It follows, therefore, from 
[9] that A m is the coefficient of r/- 1 in the expansion of z -(m+ 1)/2 in ascending powers of r/. 

Now from [6]. 

,.g-(re+l)/2 = / , ] - (m+l)(Co ..{_ Cl~] ..~ C 3 r ] 3 . . .  ) - ( r e+ l ) /2  [10J 

and expanding the expression by the binomial expansion gives, 

C1 1, Ao = Co 1/2, Al = ~oCo 

4/  13) 
A3 = -Co I Co + ICo] 

A4 = CoS/Z{ 5 C 4 35 C3Ct 
c--Vo 

A5 = Co3I-3 C5 CIC4 
Co + 12 C-~o-  

A2= Co C°3/2' 

3465 [CII4/ 
+ 384-/Uo// 
3 C2C3 5) 
o 

The parameter, a, has been evaluated from [8] by substituting for the coefficients, A,., 
and solving the generated power series by successive approximation. Convergence was 
achieved with the first six terms of the series giving a value of a of - 0.6265. 

Table 1. Numerical values 
of coefficients A,, 

Ao 1.4142 
A1 0.4176 
A2 0.2312 
A3 0.0619 
A4 0.0046 
A s - 0.0028 
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Table 2. Tabulated values of the functionsJ' and q 

r q x//2~l I '  

0 0 0 1.0 

0.2 0.6805 0.9624 0.5997 

0.3 0.8514 1.2041 0.5198 

0.4 1 .(X) I 1.4 i 56 0.4513 

0.5 1,1360 1.6065 0.3968 
0.6 1.2628 1.7859 0 .35t0  

0.7 1.3830 1.9559 0.3116 

0.8 1.4980 2. t 185 0.2784 

0.9 1.6093 2.2759 0.2477 

1.0 1.7173 2.4286 0.2212 
2.0 27017 3.8208 0.0751 

3.0 3,6351 5.1408 0.0270 
4.0 4.5659 6.4572 0.0090 

This may be compared with the exact value of -0 .6275 obtained by Howarth (1959) and 
Sakiadis (1961b). The first six coefficients, A,,, are listed in table 1. The variation of velocity 
across the boundary layer can now be obtained directly from [2] after integrating in 
incomplete gamma-functions, viz. 

a S  [ m + l ~  j , : ,  + ) 

where r/and ~ are related by [5]. 
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Figure 1. Comparison of numerical and analytical solutions. 
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Table 3. Comparison of values of boundary layer coefficients deter- 
mined by numerical and analytical methods 

Numerical Polhausen Present 
solution solution solution 

(Sakiadis 1961b) (Sakiadis 1961b) 

Displacement 
thickness 1.143 0.990 1.152 

Momentum 
thickness 0.6275 0.605 0.6265 

Some values of the functions f '  and r/are listed in table 2 for a range of the variable ~. 
They have been derived using values of the incomplete gamma-functions tabulated by 
Pearson (1922). These results show excellent agreement with the numerical solution,t and 
this is illustrated in figure 1, together with a curve derived by Sakiadis using a Polhausen 
integral method. 

Sakiadis (1961 b)has also calculated approximate and exact values of two further boundary 
layer parameters, namely, the displacement thickness (6") and momentum thickness (0). 
Using the above form of velocity profile, we obtain 

1.152 

0 =  0.6265(~ -~) 1/2 [13] 

A comparison is made in table 3 between the boundary layer coefficients given by equations 
[12] and [13] and the corresponding values presented by Sakiadis. It is seen that the present 
solution gives the momentum and displacement thickness to within 1 ~ of their exact 
values. 

C O N C L U S I O N S  

The work has demonstrated that the method of steepest descent for solving boundary 
layer equations can be applied more accurately than the Polhausen integral method to the 
problem of continuously formed surfaces. Excellent agreement between the analytical and 
numerical solutions has been obtained for the velocity distribution and the displacement 
and momentum thicknesses. 

tEquation [1] is identical to that presented by Sakiadis (1961b) for plane flow except that, in the latter's 
derivation, a constant equal to 2 appears in the coefficient of the termff". This arose from the less conventional 
choice of the definition of ~/as y(u/vx) 1/2 rather than r /= y(u/2vx) 1/2. His solutions may therefore be applied to 
the general case after correcting for the factor x/~. 
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